Automotive Topics and Trends

The truck’s design removes the internal combustion engine, advancing commercial vehicle safety standards, and protecting pedestrians and other road users. Volta Trucks also offers leasing or purchasing options, and integrates services like maintenance, charging infrastructure, and training through its truck-as-a-service model. This simplifies the transition to electric vehicles for fleets, reducing environmental impact and promoting safer urban transport. For this in-depth research on the Top Automotive Trends & Startups, we analyzed a sample of 6000+ global startups & scaleups. However, automotive executives need help as they focus on new technology that meets consumer and regulatory demands.

Autonomous vehicles change the face of the auto industry

  • Also, IoT sensors such as LiDAR and radar expand perception by generating environmental data.
  • The startup uses automotive sensors and compute platforms to offer a scalable solution for cars to enable large-scale fleet learning.
  • South Korean startup BOS Semiconductors builds Eagle-N, an AI accelerator for in-vehicle infotainment (IVI) and ADAS.
  • By incorporating AI tools, the company has reduced production costs while accelerating vehicle launch timelines.
  • We invite you to revisit these top stories, share your perspectives, and stay tuned for more in-depth coverage of the trends shaping the automotive world.

This facilitates the integration of Apple CarPlay, Google Android Auto, and media streaming into in-vehicle infotainment systems. UK-based startup WF Telematics offers vehicle and asset tracking solutions for businesses seeking efficient fleet management and asset monitoring. Its vehicle tracking system provides 24/7 real-time visibility, supported by self-install and engineer-fitted options, with no minimum fleet size required. With the introduction of 5G networks, advanced telematics features like real-time diagnostics, autonomous driving, and improved safety systems are becoming even more feasible.

News + Insights

Infineon, the largest manufacturer of auto chips, is increasing its investment in production by nearly $1 billion euros in 2022. All of this puts the auto industry at the back of the line when it comes to receiving chips. Now, 94% of consumers check the manufacturer’s website for product information before purchasing a part. And Tesla had already decided to close all its stores in 2019, now selling all new cars online.

Automotive Topics and Trends

Regenerative braking systems, crucial in EVs and hybrid cars (HEVs and PHEVs), contribute to energy recovery rates of 5% to 20%, depending on driving conditions. The platform includes geofencing, driver behavior monitoring, route mapping, and integrated or standalone camera options, accessible via a dashboard and mobile app. For asset tracking, the startup provides small, discrete devices with long-life batteries lasting up to five years, waterproof ratings, and location monitoring alerts for reliability in outdoor conditions. XCognition captures operator input or sensor data to generate execution-ready robotic programs to increase accuracy and reduce deployment time. XTrude models the physics of FDM processes to optimize parameters like flow rate and extrusion temperature to ensure large-scale 3D printing.

It offers more sustainable 3D printing by developing its own large-scale printing hardware and using fully recycled composite materials. DAM can print parts as large as 1000x3000x1000mm using engineering-grade recycled plastics. Firstly, it accelerates the design and testing process through rapid prototyping.

The global ADAS market is projected to reach USD 36.6 billion by 2025, with a CAGR of 10.8% from 2025 to 2037. Companies like Nvidia innovate in AI-powered chips for AVs, partnering with automakers like Toyota, Tesla, and Aurora Innovation to enhance autonomous capabilities. North America led the AV market in 2024 with over 40% revenue share, while Asia-Pacific is the fastest-growing region, with an expected CAGR of 35% from 2024 to 2033. Level 3 (conditional automation) and Level 4 (high automation) systems are gaining traction, with broader availability expected in Europe and North America by 2025. Tangram Vision allows perception teams to focus on product-specific features by handling complex sensor tasks and accelerating development and deployment processes.

Qumasoft’s solution enables companies to develop, produce, and operate cybersecure vehicles and components efficiently. This reduces development costs and time while enhancing quality and analytical capabilities. Further, the Asia-Pacific region is anticipated to witness rapid growth, with a projected CAGR of 18.3%, driven by rising vehicle sales and evolving safety regulations. These vehicles reduce emissions and feature innovative designs for modern commuters. Avvenire focuses on sustainable mobility to contribute to a cleaner environment and meet the demand for green transportation.

With a computer or smartphone, buyers can choose desired features, secure financing, and even take virtual walk-around and test drives. In 2025, more dealerships are expected to offer online sales, vehicle inspection, and home delivery. Solid-state batteries, which promise to offer higher energy density and improved safety over traditional lithium-ion batteries, are on the horizon. These batteries can provide longer driving ranges and faster charging times, which have historically been limitations for EV adoption. Automakers like Toyota and QuantumScape are heavily investing in this technology, and we can expect breakthroughs in battery chemistry and design in the coming years.

Phenikaa X provides Intelligent Transportation Solutions

Developing high-performance, long-lasting, and cost-effective batteries is a key area of focus for automakers in 2025. Batteries are the heart of any electric vehicle, and improvements in battery technology will continue to shape the future of EVs. Companies focus on increasing energy density to improve range and reduce charging times. The trends shaping automotive manufacturing in 2025 emphasize innovation, sustainability, and connectivity. As electric vehicles become mainstream, digitalization reshapes production, and mobility services redefine car ownership, the industry is set to transform how vehicles are manufactured and used.

Motomatix develops Auto Parts Ordering Platform

It offers ready-to-use workflows across system, software, and project management processes. Its MotionSafe Privacy platform uses algorithms to monitor controller area network (CAN) traffic and detect anomalies. The platform also erases personally identifiable information (PII) from vehicle systems to maintain privacy. For example, over-the-air (OTA) updates depend on secure encryption and authentication to block malicious code injection. Likewise, fleet operators strengthen defenses for telematics, routing data, and driver information against manipulation. AI and machine learning (ML) support cyber defenses by enabling real-time anomaly detection and predictive monitoring.

a. Urban Mobility and Shared Vehicles

  • It highlights high startup activity in Western Europe and the USA, followed by India.
  • In China, it was even reported that lithium-ion battery pack prices fell below $100/kWh for the first time.
  • This regulatory clarity will pave the way for broader AV adoption in cities, particularly in controlled environments like urban areas or designated autonomous vehicle lanes.
  • Its products include the Leggera, an all-electric vehicle for on-road and off-road use, and the Spiritus, a three-wheel electric car with optional autonomous driving, Wi-Fi connectivity, and solar panels.
  • The industry is also innovating in battery chemistry, thermal management, and vehicle-to-grid (V2G) tech to improve EV usability.
  • These tools enable dealerships to handle inquiries efficiently, freeing time for other tasks.
  • Learn why it matters more than organic traffic and how to improve your rankings and visibility.
  • Its AI-driven control systems, xCognition and xTrude, enhance industrial robotics and additive manufacturing by automating programming and improving precision.
  • Sales for BEV and PHEV in Europe increased by 137% in 2020 compared with the previous year (despite a 20% year-over-year decrease in the total car market).

Major automotive manufacturers are responding by rethinking their revenue models and investing heavily in on-demand vehicle access services. Meanwhile, tech companies such as Uber and Lyft continue to expand their digital-first transportation solutions, creating a more competitive and diverse mobility landscape. Moreover, automakers offer features on demand as they are turning cars into service platforms. Likewise, projects USD billion in annual software and services revenue by 2030 from connected vehicles. The startup strengthens autonomous driving by providing reliable and production-ready Level 4 vehicles that expand commercial mobility solutions. Semiconductors enhance safety by enabling faster decisions and reducing accident risks.

Autonomous Driving: The Road to a Self-Driving Future

Research has indicated that autonomous cars are safer, reduce downtime, expand the last-mile delivery scope, and improve fuel efficiency by 10%. Additionally, several trucking companies have tested self-driving technology, and it will soon become commonplace, with fleets of autonomous trucks sharing the road with traditional vehicles. Automakers and technology giants like Google and Tesla are incorporating more digital technology into their cars.

Autonomous driving will continue progressing from Level 2+ driver-assist to Level 3 conditional autonomy in geo-fenced areas. Full Level 4 and 5 autonomy remain years away due to regulatory, ethical, and technical challenges. Expect more robotaxi pilots, fleet autonomy, and advanced safety features integrated into mainstream cars. The focus will also be on cybersecurity and fail-safe systems to build consumer trust.

Automotive Industry Trends 2025: Future & Growth of Automotive

The foundation of autonomous vehicle architecture lies in a set of sensors, including LiDAR, radar, and ultrasonic systems, providing cars with a 360-degree panoramic view. These sensors measure distances, identify obstructions, and capture crucial traffic and road condition data. When paired with high-resolution cameras, these tools allow self-driving cars to identify objects, lane markers, and even pedestrians with unprecedented precision. While full autonomy is still on the horizon, advanced driver assistance systems (ADAS) are already transforming how we drive. In 2025, the focus will be enhancing ADAS features, such as adaptive cruise control, lane-keeping assistance, automatic emergency braking, and more. While some regions already allow limited AV testing and deployment, 2025 will likely see a more transparent legal framework surrounding autonomous driving technology.

Chip shortages have been causing myriad changes to trends that affect the automotive trends that are not all positive. Meanwhile, Carlos Tarves, CEO of automaker Stellantis, has said the chip shortages will continue to plague his industry next year. Self-driving taxis are already available in parts of China and several US cities. More driverless journeys will occur as technology continues to be enhanced and refined. Global passenger EV sales grew 60% from 6.5 million units in 2021 to 10.5 million in 2022.

Printing: Revolution in Automotive Manufacturing

  • Autonomous vehicles are reshaping mobility, from AI‑powered perception to intelligent infrastructure and generative simulation.
  • The parts industry is benefiting from the ever-increasing average age of vehicles on the road.
  • The shortages have forced manufacturers to delay product launches and reduce outputs, among other issues.
  • Miniaturization trends in automotive electronics enable the integration of multiple sensors into compact systems to improve vehicle performance while reducing costs.
  • The startup’s vehicle management system provides insights into speed, running vitals, and health information.
  • As per market and industry experts, these four trends represent the future of the automotive industry.
  • Right now, there are only about 73,215 public EV charging stations across the US.
  • Autonomous tech will likely be bundled with subscription services, reshaping mobility economics.

Even with this rapid growth, EV’s share of cars on the road is expected to remain at just 8% by 2030. If you want to learn more about 10 of the most important auto industry trends for the next months, read on. The specialty equipment industry recognizes the potential in off-road products and accessories, mainly for pickups and SUVs such as the Jeep Wrangler. More than half of pickup owners purchase off-road parts and engage in outdoor activities with their vehicles.

In this world where we are shifting to EVs, individuals usually prefer to shift to smaller vehicles which are much more affordable and environmentally friendly. They are much more convenient to use in these congested cities and parking these vehicles is much easier. Younger generations, especially Genz or millennials prefer these vehicles as they are much more attractive.

Discover all Automotive Technologies & Startups

The US-based startup Launch Mobility develops a platform for a range of shared mobility solutions. The platform LM Mission ControlTM offers free-floating or station-based car sharing, advanced shuttle services, shared dockless scooters, keyless rental programs, and peer-to-peer shared mobility. Further, their drivers use out-of-the-box or white-labeled apps to manage reservations or remotely access vehicles. Factories equipped with IoT-enabled devices and machine learning capabilities are emerging as the backbone of next-generation automotive production. These facilities use data-driven insights to optimise processes, reduce energy consumption, and increase operational efficiency.

It incorporates various AI-powered technologies like adaptive cruise control, automatic emergency braking, and lane-keeping assistance, allowing vehicles to navigate complex road conditions autonomously. These systems can detect objects, evaluate road environments, and make real-time decisions to further enhance safety and comfort. Consumer trends in the automotive industry highlight that short videos are more effective in converting leads into customers. Dealerships can take advantage of different video formats, like how-to videos, car highlights, and customer testimonials. With more and more customers prioritizing environmental sustainability, the focus should be on promoting environmentally conscious manufacturing processes along with eco-friendly cars like electric vehicles.

The automotive industry is highly dynamic, and these trends are subject to change over time. Monitoring and understanding these trends are critical for automakers and other stakeholders to stay ahead of their competitors. The US-based startup Apex AI enables automotive companies to implement complex AI solutions. Apex.OS runs on automotive electronic control units (ECUs) and offers robust, reliable, and secure APIs to develop autonomous mobility solutions. ApexAutonomy offers modules to build 3D perception, localization, and control to enable autonomous vehicles. Lastly, MARV.Automotive is a configurable and extensible data management platform that reliably transmits data from the vehicle to the cloud.

  • It enables systematic results in cybersecurity, functional safety, and process conformance.
  • These systems can detect objects, evaluate road environments, and make real-time decisions to further enhance safety and comfort.
  • The current trends in the automotive industry seen in previous years will remain in 2025 and are likely to become automotive future trends.
  • Motoreto strengthens supply chain resilience in the auto industry and drives nearshoring by aligning distribution, procurement, and sales with regional market needs.
  • French startup Airnity provides a cellular connectivity platform for the automotive industry to enhance connected car operations.

This increases the regulatory push toward connected and safety-enhanced vehicles. General Intelligence strengthens the evolution of software-defined vehicles by aligning human-inspired learning with safety. It also advances autonomous driving by enabling adaptability across vehicle types and conditions. In addition, the unit supports multiple communication protocols, including CAN and FlexRay. It also works with Ethernet and LIN, enabling integration across passenger cars, role of analytics and vehicle data in auto success buses, trucks, and autonomous vehicles. Chinese startup Move-X Autonomous Driving offers Level 4 autonomous driving through integrated vehicle platforms designed for commercial deployment.

What role will artificial intelligence play in the future of the automotive industry and its trends?

Automotive Topics and Trends

TeraDAR strengthens sensor fusion by providing high-resolution, all-weather imaging that improves vehicle perception and increases safety. Moreover, the startup leverages patented research and extensive radar expertise to deliver dependable detection in densely populated settings. Radar Reticence strengthens sensor fusion by supplying interference-free radar data that enhances vehicle perception and improves safety. LiDAR provides high-resolution 3D mapping that allows vehicles to detect road geometry, obstacles, and pedestrians with centimeter-level accuracy. Also, radar ensures long-range detection of moving objects in all weather conditions, which is critical for adaptive cruise control and highway safety.

As per market and industry experts, these four trends represent the future of the automotive industry. It won’t take too long for the CASE to accelerate the transition of the automotive industry from the way it has been working for hundreds of years. The modernized vehicles available in the market have opened an opportunity for the firms that supply and also manufacture the parts.

Automotive trends for 2025

Along with battery-powered electric vehicles, fuel cell electric vehicles (FCEV) are another alternative to internal combustion engines. By 2035, approximately 16% of all new LV (light vehicle) sales in the US are predicted to consist of advanced automated vehicles (L3, L4, and L5). Fewer new vehicle purchases mean consumers hold onto their vehicles longer, reducing the available used inventory and increasing prices. Additionally, interest rates for used vehicle loans are higher than those for new cars. It is anticipated that used-vehicle sales will not return to pre-pandemic levels of around 40 million units per year until 2025, similar to new-vehicle sales.

Advanced Driver Assistance Systems (ADAS)

Many enterprises are moving ahead to create autonomous vehicles with all the multi-faceted benefits. To meet these new requirements and realize this long-term vision, approaches are required to push against the status quo. To understand AI’s impact on the automotive industry, it is important to consider the ongoing shifts across the automotive landscape, especially the transition toward software-defined vehicles. Modern vehicles have transitioned from distributed architecture to a centralized, high-performance computing model. This transformation has further streamlined the vehicle architecture, facilitating over-the-air software updates, more efficient management, and lowering overall complexity.

However, that number is smaller than it was in 2019 when more than 80% of people commuted by car. The Wall Street Journal reports that dealerships have been known to charge $40k above MSRP on luxury cars. In some cases, car dealerships are charging huge markups on the inventory they do have.

Automotive Sourcing Models are Changing

The startup’s product range includes residential wallboxes from 7 to 22 kW and commercial chargers up to 132 kW. These units support CCS2 and CHAdeMO standards, ensuring broad adaptability across EV models. For example, Qualcomm released reports and white papers highlighting C-V2X as a critical capability for intelligent transportation systems. They also emphasize that regulatory support and infrastructure readiness are essential for large-scale deployment. BMW’s Neue Klasse illustrates this shift with four superbrains that reduce wiring by 600 meters and reduce vehicle weight. This centralization allows faster product cycles, OTA updates, and cross-domain features.

Its technology transports ultra-high-bandwidth video and data from sensors to processors with ultra-low latency. For this, it uses advanced system-on-chips (SoCs) that integrate mixed-signal analog and digital signal processing (DSP) algorithms. The European Union’s Vehicle General Safety Regulation (GSR2), effective July 2024, mandates several ADAS features in new vehicles. The U.S. National Highway Traffic Safety Administration (NHTSA) plans to require automatic emergency braking (AEB) systems in all new light-duty vehicles by 2026. This includes driver monitoring systems, adaptive cruise control, and collision avoidance systems. Integrating vehicle-to-everything (V2X) communication further improves connectivity and safety.

Automotive Topics and Trends

Autonomous vehicles (AVs) are advancing transportation by minimizing the need for human drivers and enhancing last-mile delivery efficiency. These vehicles improve public transport safety by reducing accidents caused by human error. LiDAR sensors enable precise 3D mapping, crucial for vehicle navigation and obstacle detection. AI algorithms process vast data from sensors and cameras, enhancing decision-making for safe, efficient driving.

As electric vehicles become mainstream, digitalization reshapes production, and mobility services redefine car ownership, the industry is set to transform how vehicles are manufactured and used. However, sales of robotaxi vehicles will remain a minority, as safety concerns, legislative bottlenecks and the high cost of operations restrict growth. The current trends in the automotive industry seen in previous years will remain in 2025 and are likely to become automotive future trends. The auto manufacturers who rely on the older versions of chips which are not advanced and powerful will disrupt the growth of the automotive industry.

  • Automakers integrate these systems to offer more reliable vehicles across global markets.
  • Its intelligent asset tracking defends vehicles against spoofing, ransomware, and remote control attempts.
  • As we progress through 2025, these trends will continue to reshape the automotive landscape.
  • A recent survey reveals automotive companies have product development and launch cycles shorter than 18 months.

Advanced Driver Assistance Systems (ADAS)

It also works with Ethernet and LIN, enabling integration across passenger cars, buses, trucks, and autonomous vehicles. Chinese startup Move-X Autonomous Driving offers Level 4 autonomous driving through integrated vehicle platforms designed for commercial deployment. TeraDAR strengthens sensor fusion by providing high-resolution, all-weather imaging that improves vehicle perception and increases safety. Moreover, the startup leverages patented research and extensive radar expertise to deliver dependable detection in densely populated settings. Radar Reticence strengthens sensor fusion by supplying interference-free radar data that enhances vehicle perception and improves safety.

Automotive Topics and Trends

Google and Ford recently announced a connected car partnership called Team Upshift. This type of vehicle is defined by its ability to communicate with other software systems and collect data from its surroundings. And TuSimple is hoping to begin selling completely autonomous Level 4 trucks to fleet operators in 2024. In addition, more than half of all vehicles are expected to fall into the Level 1-5 range in 2024.

  • For example, BMW’s San Luis Potosí facility applies digital replicas to reconfigure layouts and minimize waste.
  • While some regions already allow limited AV testing and deployment, 2025 will likely see a more transparent legal framework surrounding autonomous driving technology.
  • Further, Jaguar Land Rover is pioneering a closed-loop recycling process for seat foam, turning waste from old vehicles into high-quality material for new ones.
  • This allows Buy Here Pay Here (BHPH) dealers to expand their businesses and extend credit to high-risk customers.
  • While there are a lot of opportunities ahead for the industry, there will be plenty of challenges like cost pressures, growing competition, and globalization.
  • Volkswagen’s Traton Group, recognising the urgency of addressing these bottlenecks, is planning a third battery assembly plant in Europe.
  • In the first half of 2023, electrified vehicle production surged by 70%, highlighting the rapid pace of investment in EV production capabilities, and continues to grow.

Distributed Additive Manufacturing enables Large Scale Sustainable Parts Production

These advancements guide the automotive sector toward a more intelligent, secure, and sustainable future. It includes journey replays, geofencing, and driver behavior monitoring to enhance fleet efficiency and safety. The startup also offers Leap EasyTrack, a vehicle tracking solution that allows for quick and easy self-installation, making it simple to transfer between vehicles without downtime. Car connectivity and telematics improve the driving experience with real-time data integration. Cybersecurity protects these connected systems, while regenerative braking and sustainable manufacturing practices reduce the environmental impact.

Key Technology Trends in the Automotive Industry in 2025

Consumers increasingly demand eco-friendly options, influencing market offerings. Expect more biodegradable components, renewable energy-powered factories, and battery recycling programs. The trend is irreversible and will accelerate innovation while challenging legacy ICE-dependent supply chains. 5G connectivity unlocks ultra-low latency communication, enabling real-time vehicle-to-everything (V2X) interactions. This enhances autonomous driving capabilities, traffic management, and safety features. It also supports over-the-air (OTA) updates with larger data payloads and faster speeds, improving software reliability and feature rollout.

Finally, automotive manufacturers are increasingly adopting PMO software to standardize the execution of complex projects with globally distributed teams and ensure compliance with industry standards. In addition, assembling a car involves a massive number of parts (30,000 on average), with materials accounting for a significant portion (40-50 percent) of the manufacturing cost. To maintain cost competitiveness, automotive procurement teams must be critical in managing supplier networks and supply chains for existing and upcoming vehicle models. This includes aligning new technologies and business models with the company’s vision. With consumers increasingly prioritizing environmental performance when purchasing vehicles, automakers must focus on reducing emissions and developing more sustainable transportation options.

FlxTran develops Autonomous Vehicles for Unused Railway Tracks

Consumer demand for eco-friendly products is rising, with 80% of US consumers concerned about the environmental impact of their purchases in April 2024, up from 68% in 2023. Toyota intends to power its battery plant in North Carolina with renewable energy by 2025. Its early fusion approach integrates LiDAR and radar data, while neural networks infer road elements and topology to create accurate high-definition maps. Continuous change detection triggers automatic cloud updates to ensure up-to-date navigation information. South Korean startup BOS Semiconductors builds Eagle-N, an AI accelerator for in-vehicle infotainment (IVI) and ADAS. It uses Tenstorrent’s Tensix NPU core to deliver up to 250 tera operations per second (TOPS) for efficient AI processing.

🤔 Uncertain Market Acceptance and Consumer Adoption of New EV Tech

Many expected the auto industry to mount a post-pandemic rebound in 2021, but that didn’t happen. Search volume for “Infineon Technologies” has seen modest growth over the past 5 years. Infineon, the largest manufacturer of auto chips, is increasing its investment in production by nearly $1 billion euros in 2022. All of this puts the auto industry at the back of the line when it comes to receiving chips. Now, 94% of consumers check the manufacturer’s website for product information before purchasing a part.

⚖️ Regulatory Hurdles and Ethical Dilemmas in Autonomous Tech

The increasing adoption of EVs globally drives the optimization of energy usage and enhances features like regenerative braking systems through sensor fusion technologies. To accommodate the rising demand for EVs and autonomous vehicles, major automakers such as BMW, Hyundai, and Stellantis are investing in EV battery plants and semiconductor-related facilities. Sensor fusion and autonomous vehicle technologies enhance safety and enable intelligent driving solutions while ADAS bridges the gap to full autonomy. Moreover, automakers and tier-suppliers are increasingly focusing on sustainable steel production to lower emissions across their supply chains. Further, Jaguar Land Rover is pioneering a closed-loop recycling process for seat foam, turning waste from old vehicles into high-quality material for new ones. This innovative, circular production approach supports sustainability goals by reducing landfill waste and advancing circular economy practices in automotive manufacturing.

The adoption of pre-owned luxury cars is increasing due to easy access to financing and lower entry prices. Manufacturers are investing in innovative mobility technologies, such as personal voice assistance, autonomous driving, and AI and ML, creating a positive market outlook. Developing high-performance, long-lasting, and cost-effective batteries is a key area of focus for automakers in 2025. Batteries are the heart of any electric vehicle, and improvements in battery technology will continue to shape the future of EVs. Companies focus on increasing energy density to improve range and reduce charging times. The trends shaping automotive manufacturing in 2025 emphasize innovation, sustainability, and connectivity.

Autonomous vehicles change the face of the auto industry

The answer lies in education, infrastructure, and trust-building—slow but steady wins the race. The software integrates a one-shot multitask network capable of performing 2D detection, semantic segmentation, and monocular depth estimation. It processes these tasks in real time at over 120 frames per second on consumer-grade graphics processing units (GPUs). Indian startup General Intelligence creates self-driving intelligence software that supports software-defined vehicles in adapting to diverse driving environments.

Inside the architecture: How software-defined vehicle (SDV) platforms are built

Its intelligent asset tracking defends vehicles against spoofing, ransomware, and Australian buyers guide to VIN reports remote control attempts. Also, EV charging infrastructure requires strong cybersecurity, as attackers target charging stations for data theft or service disruption. The startup also operates PartSmart, a real-time parts ordering platform that connects insurers, workshops, fleet owners, and suppliers. The platform enables visibility across the entire claims cycle and supports both OEM and aftermarket sourcing.

Automotive Topics and Trends

The systems that come together to implement such technologies are sensor fusion, computer vision, and real-time decisions to enable the vehicle to take all complex traffic scenarios easily. Significant investments in AI and Internet of Things (IoT) devices are crucial for fine-tuning self-driving algorithms, making them safer and more reliable. This also presents an emerging opportunity to connect the vehicle ecosystem, creating a dynamic adaptation of data for road and weather conditions, assisted by IoT-enabled devices.

News + Insights

Swedish startup Intended Future utilizes data-driven design benchmarking tools for the automotive industry. Probably the most important trend in the automotive industry is the worldwide shift to electric vehicles (EVs). New vehicle inventory levels till December 2022 were 52% below December 2019 but 56% above January 2022. On the other hand, personal vehicles are on the rise due to improving urban road infrastructure, and the popularity of pre-owned cars among young people is also driving the market growth. Fuel-cell electric vehicles will emerge worldwide in 2025 due to their faster recharge, extended range, and zero emissions. Major car, truck, and SUV manufacturers are investing in fuel-cell electric vehicle development, with the support of countries like China, Germany, Japan, South Korea, and the United States.

Discover Trending Technologies & Topics

Moi uses continuous fiber manufacturing (CFM) technology, robotic intelligence, and digital fabrication to deposit fibers. As a result, the solution is easily scalable for producing composites for panels, frames, and interior components. The startup also serves other industries, such as aerospace, construction, and biomedical.

However, their preferences changed after some time, Buyers are willing to spend an amount, while looking for the best vehicles available in the market. Businesses would start optimizing their search guides as per the consumer’s preferences. To address these threats, proactive cyber security is a must for automakers and their partners across the value chain. Robust IoT (Internet of Things) security, regular software updates, and well-prepared incident response plans are the essential building blocks of a strong cyber security strategy. In addition to electrification, hydrogen fuel cell technology is gaining traction as a potential solution for zero-emission transportation. Hydrogen-powered vehicles produce only water vapor as a byproduct, making them a strong contender for sectors that are harder to electrify, such as long-haul trucking and commercial transportation.

More than 12% of consumers who financed a new car in June of 2022 had a monthly payment of $1,000 or more. It’s clear that a select subset of today’s consumers are willing to pay for high-end automobiles. Power say that sales of cars worth more than $100k were outselling lower-priced cars 3 to 1 in the first quarter of 2022.

Road safety, regulatory mandates, autonomous vehicle adoption, and smart city development drive this innovation. The World Health Organization links 1.36 million annual deaths to road accidents. The US National Highway Traffic Safety Administration (NHTSA) estimates that V2X addresses up to 80% of crashes involving non-impaired drivers. Moreover, economic efficiency improves adoption, as autonomous vehicles reduce transport costs by up to 40% and maximize logistics utilization.

Approximately 70 percent of industrial companies report faster chip supply, possibly due to weakened consumer spending and demand. These constraints are expected to persist into 2025, as semiconductor production has exceeded full production-rate utilization since 2019, with recent rates surpassing 95%. Battery manufacturers have significantly reduced their production since early December due to the unpromising demand in the upcoming months.

OEMs are juggling more regulations with fluctuating demands and ongoing chip shortages

The World Health Organization links 1.35 million annual deaths to road accidents, creating urgency for autonomy. AI, ML, and computing allow vehicles to process data points per second with split-second precision. This ensures cybersecurity and reliability for engine control, powertrain management, and other mission-critical automotive applications.

Artificial Intelligence and Smart Factory technologies are no longer aspirational but integral to modern automotive manufacturing. Stellantis, for instance, has demonstrated how AI can transform production efficiency. By incorporating AI tools, the company has reduced production costs while accelerating vehicle launch timelines. This approach enhances flexibility across its global operations, ensuring a rapid response to shifting market demands.

wrap up and 2025: EV batteries, gigafactories, sustainability and smart factories in auto manufacturing

Innovations like solid-state batteries are set to revolutionise manufacturing priorities and reshape the EV supply chain. These over-the-air updates are becoming essential for ensuring vehicle reliability, safety and security, and are opening new revenue streams for manufacturers. Moreover, its software platform manages real-time energy flows and integrates with solar systems to optimize renewable energy usage. It also enables customers to schedule and monitor charging activity for improved efficiency. Australian startup V2Grid designs V2G technology that converts EVs into mobile energy resources for homes, businesses, and the national grid. Its bidirectional charging system enables EV batteries to both draw electricity and feed surplus power back, which balances demand during peak hours and reduces strain on infrastructure.

Companies like Toyota and Hyundai are investing in hydrogen fuel cell technology. By 2025, we could see a broader adoption of fuel cell vehicles, especially in regions like Europe and Asia, where hydrogen infrastructure is beginning to grow. Environmental consciousness is driving the automotive industry toward more sustainable and eco-friendly solutions. Manufacturers are prioritizing robust security measures to protect sensitive consumer data and prevent malicious interference.

Automakers need to redesign their vehicles or should look for other chip options available. The AI in Automotive industry in 2026 is evolving as AI, autonomous technologies, and software-defined vehicles reshape global mobility systems. This AI in Automotive Market Report examines the trends and technologies driving vehicle intelligence, operational efficiency, safety advancement, and data-driven mobility innovation. What initially appeared to be a niche sector is now the foundation of the auto industry’s transition. While automakers spend billions developing electric cars, most governments worldwide have ambitious plans to phase out internal combustion engines.

The need for high-performance processors is also growing as a result of software-defined vehicles (SDVs), which rely on semiconductors for ongoing updates and subscription-based services. The global automotive semiconductor market is projected to grow from USD 53.57 billion in 2025 to USD 86.81 billion by 2033, with a CAGR of 6.22%. Volkswagen’s Traton Group, recognising the urgency of addressing these bottlenecks, is planning a third battery assembly plant in Europe.

  • The number of autonomous trucks on the road was expected to increase from roughly 150 in 2020 to over 2000 in 2021.
  • The automotive industry is gearing up for a transformation as fast and furious as the iconic franchise suggests.
  • In addition, the initiative will leverage the data collected by adding Google’s AI capabilities to Ford vehicles.
  • Hungarian startup V2ROADS offers a range of products and services tailored to the V2X ecosystem.
  • The World Health Organization links 1.35 million annual deaths to road accidents, creating urgency for autonomy.
  • The startup’s vehicle management system provides insights into speed, running vitals, and health information.

Procon Analytics builds Automotive Finance

  • US-based startup NuNami designs automotive semiconductors that provide reliable connectivity and safety-critical interfaces.
  • Its early fusion approach integrates LiDAR and radar data, while neural networks infer road elements and topology to create accurate high-definition maps.
  • If you want to learn more about 10 of the most important auto industry trends for the next months, read on.
  • Firstly, it accelerates the design and testing process through rapid prototyping.
  • As a result, vehicles become even more connected with each other and the infrastructure and provide drivers with more advanced opportunities.
  • Italian startup Moi combines thermosetting composite materials and 3D printing to manufacture high-performance parts for the automotive industry.

The idea behind a circular economy is to create a closed-loop system where materials are reused, refurbished, and recycled rather than disposed of. In 2025, many automakers will focus on creating vehicles that are easier to disassemble, repair, and recycle at the end of their lifecycle. This approach could significantly reduce waste and contribute to a more sustainable automotive industry. Leading companies such as Volkswagen, General Motors, and Volvo have committed to producing zero-emission vehicles and achieving carbon-neutral operations by mid-century. In line with this, automakers focus on sustainability in their manufacturing processes, energy sourcing, and material selection.

However, the primary function of these cars is not just to entertain they can connect to other vehicles (V2V), pedestrians (V2P), infrastructure (V2I), and cloud (V2C). Lastly, there’s even a term “vehicle-to-everything” (V2X), which includes all types of vehicle communication. This infrastructure ensures the safety of drivers and passengers and can even send emergency SOS messages to respective services in case of an accident, sharing all the critical information. Connectivity also enables remote diagnostics, alerts the driver about necessary maintenance, and promotes both safety and cost-efficiency. The foundation of autonomous vehicle architecture lies in a set of sensors, including LiDAR, radar, and ultrasonic systems, providing cars with a 360-degree panoramic view.

European manufacturers are leading the charge with plans for affordable EV models, such as Citroën and Renault. These budget-friendly models aim to stimulate adoption following a dip in EV sales. Consumers research their preferred car on their mobile phones, looking for the best options, offers, and dealerships. Therefore, websites need to be easily readable and accessible across mobile devices, with clear calls to action.

Automotive Topics and Trends

In addition, it adapts to applications across fleets, workplaces, airports, and multi-housing units. Its electronic control unit (ECU) platform combines AUTOSAR software modules with customizable hardware. It manages functions such as steer-by-wire, brake-by-wire, engine control, and ADAS.

Tree Map reveals the Impact of the Top 10 Automotive Industry Trends

Information technology has become a crucial part of the recent trends in the automobile industry as priorities change over time. The automotive industry stands at a thrilling crossroads, where innovation meets complexity and opportunity rides alongside challenge. The industry will continue to experience disruptions from geopolitical headwinds to regulatory and legislative developments, data security and economic challenges. Maximising the ROI to investors and stakeholders while remaining competitive will be priorities of the industry.

♻️ Circular Economy Principles and Eco-Friendly Production

Software-defined vehicle (SDV) architectures are revolutionising automotive technology, with electric models often leading this digital transformation. While traditional OEMs are adapting to this shift, we are also witnessing newer market entrants are making significant strides in implementation, which is making for a more competitive automotive sector. Road safety, regulatory mandates, autonomous vehicle adoption, and smart city development drive this innovation. The World Health Organization links 1.36 million annual deaths to road accidents.

  • Governments also enforce stricter safety standards, pushing automakers to integrate advanced sensor systems.
  • Regenerative braking systems, crucial in EVs and hybrid cars (HEVs and PHEVs), contribute to energy recovery rates of 5% to 20%, depending on driving conditions.
  • Our new generation which is called millennials or Genz researches everything online before the actual purchase.
  • Major automakers, such as General Motors, are expanding telematics offerings by integrating subscription-based services like OnStar as standard features across models.
  • Further, this also offers software solutions for fleet and asset tracking as well as connected cars.
  • It won’t take too long for the CASE to accelerate the transition of the automotive industry from the way it has been working for hundreds of years.
  • As 5G and the Internet of Things (IoT) continue their growth, vehicles are becoming more and more connected.

Automotive trends for 2025

Regardless, with the continued global slowdown of EV adoption, we can also expect original equipment manufacturers (OEMs) to follow suit, with a decrease in the level of production, especially in the West. Market leaders are adjusting their strategies to align with current trends, further emphasizing the shift towards EV-only vehicles. Just days ago, Jaguar unveiled their new concept car, the Jaguar Type 00, a fully electric, futuristic vehicle that marks a departure from every other car the brand has produced. This transformation is also expected to help revive sluggish vehicle sales by 2030. The next decade will undoubtedly see dramatic changes in how we drive, how we share vehicles, and how we engage with the technology that powers our transportation systems.

📱 The Digital Dealership Experience and Online Sales

Technology in automotive industry forges ahead—the latest technological advancements are more and more extensively used by the domain. Let’s consider the recent trends in automobile industry related to the application of latest technologies. Along with battery-powered electric vehicles, fuel cell electric vehicles (FCEV) are another alternative to internal combustion engines. By 2035, approximately 16% of all new LV (light vehicle) sales in the US are predicted to consist of advanced automated vehicles (L3, L4, and L5). Fewer new vehicle purchases mean consumers hold onto their vehicles longer, reducing the available used inventory and increasing prices.

Leap Business Solutions advances Fleet Management

At the same time, BYD, Stellantis, and Volkswagen are focused on designing a stronger PHEV portfolio. Hyundai plans to ramp up its hybrid offerings under its ‘Hyundai Way’ strategy from seven to 14 models by 2030. Toyota continues to emphasize hybrids as a critical part of its electrification strategy.

  • Examples are bikes, scooters, and mopeds, as well as the electric versions of these vehicles.
  • Consequently, the global autonomous vehicle market size is projected to reach USD 448.6 billion by 2035, growing at a CAGR of 22.2%.
  • In the future, advanced integrated solutions will dominate, leading to lighter and more efficient electric powertrains and driving the next generation of high-performance and mass-market EVs.
  • For the eighth time, we asked managers and decision-makers in the automotive industry which trends and developments they are currently focusing on.
  • The Global Startup Heat Map showcases the distribution of 6000+ exemplary startups and scaleups analyzed using the StartUs Insights Discovery Platform.
  • They also facilitate the management of maintenance and repair appointments, streamlining dealership operations.
  • This article sheds light on how OEMs are embracing solar, wind, and hydrogen power to achieve sustainability goals.
  • Its technology applies signal processing algorithms to eliminate interference and ensure radar units operate reliably within the same environment.

What are the Current Trends in Automotive Industry ( ?

The platform features customizable work product templates, detailed instructions, and comprehensive checklists for self-assessment. It also provides streamlined audit management, structured frameworks for continuous improvement, and intuitive escalation processes. Companies like BYD are collaborating with TSMC and MediaTek to develop advanced chips for vehicle controllers and smart cockpits.

c. Circular Economy in Automotive Manufacturing

The startup also serves other industries, such as aerospace, construction, and biomedical. Indian startup RevitsOne offers AI-powered fleet-management software that is suitable for fleets of varying sizes. The startup’s vehicle management system provides insights into speed, running vitals, and health information. Drivers benefit from Voicera ID, a voice-based virtual assistant that helps them keep track of the information they need.

  • Digital replicas and simulations allow manufacturers to test efficiency improvements before implementation.
  • As a car seller, dealer, or manufacturer, you must only build flexible yet solid automotive marketing strategies and create a strong sense of customer trust and loyalty.
  • Countries and states that have committed to phasing out the sale of internal combustion engines.
  • For example, BYD demonstrated a 1000 kW charging system that is capable of adding about 400 km of range in five minutes to its Han L and Tang L models under ideal conditions.
  • System downtime caused by these attacks reached $1.99 billion, compared to $1.3 billion in 2021.

Governments worldwide are imposing stricter emissions standards and incentivizing zero-emission vehicles (ZEVs). This pushes automakers to invest heavily in electric drivetrains, recycled materials, and circular economy practices. Consumers increasingly demand eco-friendly options, influencing market offerings. Expect more biodegradable components, renewable energy-powered factories, and battery recycling programs. The trend is irreversible and will accelerate innovation while challenging legacy ICE-dependent supply chains.

🏁 Conclusion: Navigating the Future of Automotive

  • These technologies enhance safety, efficiency, and user experience across vehicles.
  • The project avoids more than 500K tonnes of CO2 emissions by reducing the need for primary aluminum.
  • The massive rotation in the global vehicle fleet is predicted to take place in the 2030s.
  • To accommodate the rising demand for EVs and autonomous vehicles, major automakers such as BMW, Hyundai, and Stellantis are investing in EV battery plants and semiconductor-related facilities.
  • This regulatory clarity will pave the way for broader AV adoption in cities, particularly in controlled environments like urban areas or designated autonomous vehicle lanes.
  • This innovative, circular production approach supports sustainability goals by reducing landfill waste and advancing circular economy practices in automotive manufacturing.

These pods use AI and machine learning algorithms for real-time perception and adaptive decision-making. The startup’s technology allows these pods to adapt across industries, enhancing efficiency and safety in transporting people and goods. Singaporean startup EVIE Autonomous designs electric, autonomous shuttles for last-mile delivery, passenger transport, agriculture, and cargo movement. Its product range includes an electric modular chassis, the standard autonomous shuttle pod, and pods for other applications.

🤔 Uncertain Market Acceptance and Consumer Adoption of New EV Tech

Its RISC-V IP processors adopt 32/64-bit architectures supported by a nine-stage dual-issue visual inspection plus VIN decoding pipeline. Connectivity also adds momentum, with 5G and V2X semiconductors enabling real-time data exchange and secure over-the-air updates. Also, regulatory frameworks such as ISO and Europe’s mandate for emergency braking systems encourage mission-critical chip integration across new vehicles.

  • Hybrid vehicles present the perfect compromise of lower emissions and enhanced fuel economy without the need for charging.
  • The US-based startup Launch Mobility develops a platform for a range of shared mobility solutions.
  • AI and ML processors support object recognition, path planning, and decision-making.
  • Therefore, you should focus on environmentally conscious manufacturing processes and eco-friendly cars like electric vehicles.
  • Data from the past 10 years shows the sale of luxury vehicles making a steep climb in 2022.
  • The industry trends show a positive perspective for the times to come despite the expected global slowdown and supply chain disruptions.

NoTraffic facilitates Digital Road Infrastructure Management

5G connectivity unlocks ultra-low latency communication, enabling real-time vehicle-to-everything (V2X) interactions. This enhances autonomous driving capabilities, traffic management, and safety features. It also supports over-the-air (OTA) updates with larger data payloads and faster speeds, improving software reliability and feature rollout. For consumers, 5G means richer infotainment, seamless smartphone integration, and enhanced navigation services.

By optimizing driving routes, connected cars help reduce emissions, contributing to a greener future. Using data from IoT technology, drivers receive real-time route suggestions to avoid traffic jams and ease congestion, ensuring faster, stress-free travel. From supply chain optimization and manufacturing to personalized driving experiences and smart routing, advanced AI systems and real-time data analysis enable it all. By 2027, the global automotive AI market is expected to grow from its 2022 valuation of USD 2.3 billion to USD 7.0 billion, with a compound annual growth rate (CAGR) of 24.1%.

Stellantis, for instance, has demonstrated how AI can transform production efficiency. By incorporating AI tools, the company has reduced production costs while accelerating vehicle launch timelines. This approach enhances flexibility across its global operations, ensuring a rapid response to shifting market demands. Similarly, Skoda has embraced AI to navigate the complexities of modern manufacturing. Senegal-based startup Kemet Automotive manufactures all-terrain electric vehicles (EVs) designed for the road conditions.

Autonomous Vehicles are Changing the Face of the Auto Industry

  • To understand AI’s impact on the automotive industry, it is important to consider the ongoing shifts across the automotive landscape, especially the transition toward software-defined vehicles.
  • It also supports over-the-air (OTA) updates with larger data payloads and faster speeds, improving software reliability and feature rollout.
  • Cybersecurity protects these connected systems, while regenerative braking and sustainable manufacturing practices reduce the environmental impact.
  • They are focusing on lightweight materials and improved energy recovery efficiency.
  • The global automotive semiconductor market is projected to grow from USD 53.57 billion in 2025 to USD 86.81 billion by 2033, with a CAGR of 6.22%.
  • For instance, Planet42 extends access to underbanked consumers in South Africa and Mexico.
  • The software integrates a one-shot multitask network capable of performing 2D detection, semantic segmentation, and monocular depth estimation.

Key players like Bosch, Continental AG, and ZF Friedrichshafen AG are investing in technological advancements. They are focusing on lightweight materials and improved energy recovery efficiency. The automotive regenerative braking market is expected to reach USD 13.83 billion by 2029, growing at a CAGR of 15.8%. Usage-based insurance (UBI) models use driving behavior data to provide customized premiums and are gaining popularity. From 2024 to 2029, the insurance telematics industry is projected to grow at a CAGR of 17.6%.

According to Globe News Wire, the entire market will grow at a CAGR of 5.5% from 2025 to 2033, logging USD 984 billion. Semiconductor chips are at the heart of almost every automotive trend, from connected technologies to autonomous driving and EVs. Advanced systems that power, control, and optimize automobiles are increasingly being built around tiny chips.

Also, applications extend from adaptive cruise control, lane-keeping, and traffic jam assistance to robotaxis and driverless trucking. Advanced cameras paired with computer vision enable vehicles to classify road users, read signs, and recognize traffic signals, directly supporting ADAS and autonomous navigation. Silicon carbide (SiC) semiconductors improve energy efficiency in high-voltage EV systems by reducing losses and enhancing thermal management. Moreover, Asia-Pacific leads the automotive semiconductor market with a 45% global share. In Europe, the EU’s Chips Act aims to raise the bloc’s share of global chip production from under 10% to about 20% by 2030.

Global Startup Heat Map covers 4859 Innovative Automotive Startups & Scaleups

Automotive Topics and Trends

Also, automotive Ethernet and time-sensitive networking (TSN) provide deterministic in-vehicle data highways that keep safety-critical communication reliable. In addition, SWYTCHD includes access to premium electric scooters and cars such as the Ola S1 Pro, Ather 450X, TVS iQube, and Nexon EV. This approach enhances road efficiency and reduces fuel consumption, thereby lowering emissions. Regulations such as Europe’s General Safety Regulation 2 (GSR2), US mandates for automatic emergency braking, and China’s target of 70% Level 2-3 adoption by 2025 compel automakers to improve deployment. US-based startup TeraDAR designs its 4D imaging sensor that enhances sensor fusion by offering the Terahertz wavelength for vehicle perception. Moreover, redundancy across sensor types improves resilience in poor weather or low visibility.

CARNIQ Technologies specializes in Car Security & Compliance

It combines compound semiconductor nanomaterials with scalable silicon manufacturing for mass-market microelectronics. This approach ensures our reports provide reliable, actionable insights into the automotive innovation ecosystem while highlighting startups driving technological advancements in the industry. However, an SSAB survey reveals that cost and investment challenges remain significant barriers to widespread adoption. Despite these hurdles, the integration of sustainable materials is expected to accelerate as regulatory frameworks tighten and consumer demand for environmentally responsible products grows. ABB is investing in advanced software that simulates automotive painting processes, cutting costs by up to 30%. The simulations enhance precision and minimise waste in this energy-intensive stage of manufacturing.

Automotive Topics and Trends

Increased government focus on charging networks will be needed to support the expanding EV fleet. The autonomous vehicle sector will advance as UN regulators lift their speed limit. In the United States, the newly appointed administration has issued several executive orders that will likely have drastic impacts on both global and national automotive markets. One such order significantly impacts the future of EVs and EV infrastructure by rolling back policies that once supported their growth. It eliminates mandates that favour EVs, emphasising consumer choice and opposing regulations that make gasoline-powered vehicles less accessible.

Cube Intelligence builds Blockchains for Autonomous Vehicles

It highlights workforce trends, leading investors, and key technologies driving adoption across vehicles, batteries, charging, and software. However, the primary function of these cars is not just to entertain they can connect to other vehicles (V2V), pedestrians (V2P), infrastructure (V2I), and cloud (V2C). Lastly, there’s even a term “vehicle-to-everything” (V2X), which includes all types of vehicle communication. This infrastructure ensures the safety of drivers and passengers and can even send emergency SOS messages to respective services in case of an accident, sharing all the critical information. Connectivity also enables remote diagnostics, alerts the driver about necessary maintenance, and promotes both safety and cost-efficiency.

Q) What are the current trends in the automotive industry?

Google and Ford recently announced a connected car partnership called Team Upshift. This type of vehicle is defined by its ability to communicate with other software systems and collect data from its surroundings. And TuSimple is hoping to begin selling completely autonomous Level 4 trucks to fleet operators in 2024. In addition, more than half of all vehicles are expected to fall into the Level 1-5 range in 2024. There are already over 30 million vehicles on the road that meet the Level 1 standard.

Autonomous Vehicles are Changing the Face of the Auto Industry

It uses AI-powered damage recognition, estimation, and work distribution to streamline repair processes. Also, its platform manages claims and mechanical breakdowns across vehicle models from manufacturers. Digital replicas and simulations allow manufacturers to test efficiency improvements before implementation. For example, BMW’s San Luis Potosí facility applies digital replicas to reconfigure layouts and minimize waste.

  • Many enterprises are moving ahead to create autonomous vehicles with all the multi-faceted benefits.
  • Manufacturers that successfully integrate these elements into their strategies will not only navigate the challenges of today but also position themselves as leaders in the future of mobility.
  • This enables an all-inclusive model that replaces ownership with monthly flexibility.
  • Software-defined vehicles (SDVs), where software manages essential functions like steering, braking, and infotainment, will see rapid growth over the next few years.

Top 8 Automotive Manufacturing Trends Shaping the Future of 2025

DAM can print parts as large as 1000x3000x1000mm using engineering-grade recycled plastics. Firstly, it accelerates the design and testing process through rapid prototyping. The Automotive Trends & Startups outlined in this report only scratch the surface of trends that we identified during our data-driven innovation & startup scouting process. Identifying new opportunities & emerging technologies to implement into your business goes a long way in gaining a competitive advantage. The vehicle’s architecture includes a 3D mapping system that merges GPS and IMU data with digital maps to determine precise positioning and plan optimal routes.

As more manufacturers roll out affordable and appealing EV models, the market is shifting towards sustainable alternatives which are becoming more accessible to a broader consumer base. One of the most in-demand connectivity solutions is in-vehicle infotainment—the systems that provide both information and entertainment for enhanced driving experience. The currently available infotainment systems can connect with smartphones, sensors, ADAS (advanced driver assistance systems) as well as other in-vehicle and external systems. In 2025, a great number of car manufacturers are planning to improve their infotainment systems providing them with more and more advanced capabilities. Vehicle connectivity has become a really game-changing innovation in automotive industry that will transform the future of driving. Cars are becoming unprecedentedly smarter, and this trend is here to stay in the future.

Best of 2025 How Generative AI Is Transforming Industry

The technology has already processed over a billion customer requests and is set to grow in 2025 with predictive intelligence and maintenance technology. North American and European automakers offer consumers the option to buy vehicles online without visiting dealerships. With a computer or smartphone, buyers can choose desired features, secure financing, and even take virtual walk-around and test drives. In 2025, more dealerships are expected to offer online sales, vehicle inspection, and home delivery. Solid-state batteries, which promise to offer higher energy density and improved safety over traditional lithium-ion batteries, are on the horizon. These batteries can provide longer driving ranges and faster charging times, which have historically been limitations for EV adoption.

Automotive trends in 2025 impacting middle-market organisations

The study offers data-based insights and recommendations for action for decision-makers in the automotive sector. Gain in-depth insights into the key developments that characterise the automotive industry. UK-based startup Distributed Additive Manufacturing (DAM) offers 3D printing services including design, building, and finishing of parts. It offers more sustainable 3D printing by developing its own large-scale printing hardware and using fully recycled composite materials.

Electrified Vehicles Top 50% of Sales in China

Also, automotive Ethernet and time-sensitive networking (TSN) provide deterministic in-vehicle data highways that keep safety-critical communication reliable. In addition, SWYTCHD includes access to premium electric scooters and cars such as the Ola S1 Pro, Ather 450X, TVS iQube, and Nexon EV. This approach enhances road efficiency and reduces fuel consumption, thereby lowering emissions. Regulations such as Europe’s General Safety Regulation 2 (GSR2), US mandates for automatic emergency braking, and China’s target of 70% Level 2-3 adoption by 2025 compel automakers to improve deployment. US-based startup TeraDAR designs its 4D imaging sensor that enhances sensor fusion by offering the Terahertz wavelength for vehicle perception. Moreover, redundancy across sensor types improves resilience in poor weather or low visibility.

Automotive Events Worldwide

Norway set a record in the electric vehicle sector in August 2024, as the number of all-electric vehicles on the road surpassed that of gasoline-powered vehicles for the first time. In terms of new car sales, Norway boasts the highest percentage of battery-electric vehicles in Europe. It also leads Europe in new EV market activity, with just 9.61 percent of new passenger car sales in 2023 attributed to gasoline, diesel, and non-rechargeable hybrid vehicles. The idea behind a circular economy is to create a closed-loop system where materials are reused, refurbished, and recycled rather than disposed of.

SWYTCHD offers EV Subscription

In 2025, Uber and GM Cruise will partner, allowing users of the Uber ride-hailing platform to book fully self-driving vehicles from the app in selected US cities. Italian startup Moi combines thermosetting composite materials and 3D printing to manufacture high-performance parts for the automotive industry. Moi uses continuous fiber manufacturing (CFM) technology, robotic intelligence, and digital fabrication to deposit fibers. As a result, the solution is easily scalable for producing composites for panels, frames, and interior components.

Automotive Topics and Trends

Semiconductors are, in essence, at the heart of modern car manufacturing, reshaping our understanding of mobility. The US-based startup Procon Analytics leverages big data to offer a solution for automotive finance. The solution captures millions of data points in real time and analyzes them to enable lenders to instantly assess and reduce risk. This allows Buy Here Pay Here (BHPH) dealers to expand their businesses and extend credit to high-risk customers. Further, this also offers software solutions for fleet and asset tracking as well as connected cars.

The autonomous vehicle (AV) market is on an impressive growth trajectory, expected to surge from a market value of $1,921.1 billion in 2023 to a staggering $13,632.4 billion by 2030, with a CAGR of 32.3%. A major driver of this growth is the increasing focus on commercial applications, such as logistics and ride-sharing services. Advances in AI, sensor technology, and connectivity are also playing a key role in improving the safety and adoption of autonomous vehicles. The global automotive semiconductor market is expected to grow at a rate of 8.1% between 2023 and 2030. This growth is driven by the increasing adoption of electronic control units (ECUs) in modern vehicles and the rising implementation of advanced safety systems.

Can Car Color Really Affect Your Chances of a Speeding Ticket? 🚦

Moreover, car connectivity transforms the driving experience by integrating with real-time systems and smart gadgets. These advancements guide the automotive sector toward a more intelligent, secure, and sustainable future. It includes journey replays, geofencing, and driver behavior monitoring to enhance fleet efficiency and safety.

Improved range, faster charging times and enhanced performance are making EVs not just environmentally conscious choices, but compelling alternatives for everyday use. The global vehicle subscription market is projected to reach as high as USD 791.0 billion by 2032 at growth rates of up to 74.6% annually. This rapid expansion reflects how automakers and mobility providers are shifting from ownership models toward flexible, access-based mobility solutions. Sensor fusion drives the automotive lessons learned from bad used bike buys industry’s shift to autonomy by integrating data from cameras, light detection and ranging (LiDAR), radar, and ultrasonic sensors into a unified perception system. Mercedes-Benz’s Drive Pilot showcases this with over 35 sensors, including LiDAR and radar, working together to achieve certified Level 3 autonomy. In 2026, the auto industry accelerates its transition from combustion-based production to electrified, software-driven, and sustainable mobility.

Automotive Topics and Trends

b. Regulatory and Legal Challenges

Connected vehicles are entering a software-defined era where 5G, AI, and V2X convert cars into real-time data nodes that communicate smoothly with infrastructure, other vehicles, and the cloud. Our new report spotlights 10 connected vehicle trends to watch in 2026 that promise safer, smarter mobility and fresh revenue streams for automakers. Curious how electric vehicle trends like solar integration, AI-powered systems, and modular design are innovating mobility? This report explores the top 10 electric vehicle trends shaping the industry in 2026. Discover how these shifts improve charging, safety, and sustainability and what they mean for your business.

Autonomous Vehicles (AVs)

Peugeot introduced groundbreaking technologies like the Hypersquare control system and steer-by-wire, marking a significant leap in electric vehicle design and user experience. These innovations represent the brand’s commitment to redefining driving dynamics in the EV era. Despite initial scepticism, the automotive industry is embracing enhanced connectivity by enabling real-time updates and post-production feature additions. Through our work with automotive innovators, we witness first-hand how rapidly this sector is evolving. From electrification and software integration to new mobility models, the industry faces unprecedented change.

In 2024, the automotive industry is increasingly integrating cutting-edge technologies into its operations. Key automotive industry trends include a significant rise in electric vehicle production, a growing market for pre-owned vehicles, and an uptick in digital car sales. Alongside established technologies like AI and big data analytics, the industry is also embracing the Internet of Things (IoT) and blockchain for diverse applications. This technological evolution is reshaping the automotive landscape, driving innovation and efficiency.

  • This report explores how breakthrough technologies are accelerating the shift toward safer, smarter, and more sustainable transportation systems worldwide.
  • By leveraging these factors, Statevolt is positioning itself to meet the rising demand for EV batteries in an increasingly competitive market.
  • AI, automation, and an ‘electric-first’ mindset are impacting every industry, and automotive is no exception.
  • For instance, Qualcomm states that C-V2X allows vehicles to communicate with other vehicles, with infrastructure (V2I), and with vulnerable road users.
  • Due to the pandemic, the automotive sector is undoubtedly facing one of the most challenging periods and a massive slowdown for the last couple of years.
  • The market reflects its role in meeting strict safety rules and consumer demand for smarter vehicles.

The US-based startup Udelv provides autonomous vehicles for last-mile deliveries. It combines advanced AI algorithms and hyper-speed teleoperations for human-assisted guidance in unique situations. The vans deliver groceries from nearby stores and send out a push notification when the order arrives.

News + Insights

Moreover, the technology combines EV chargers, a DC bus, smart inverters, and an energy management platform. This coordinates power flows between vehicles, buildings, and distributed energy resources. Also, IoT sensors such as LiDAR and radar expand perception by generating environmental data. For instance, Audi and BMW vehicles exchanged sensor data, including camera feeds, during 5G-V2X Direct demonstrations in Berlin.

Safety concerns remain in the spotlight – this is leading to greater acceptance of incremental developments in advanced driver-assistance systems (ADAS) rather than pushing for immediate full autonomy. Major automotive manufacturers are responding by rethinking their revenue models and investing heavily in on-demand vehicle access services. Meanwhile, tech companies such as Uber and Lyft continue to expand their digital-first transportation solutions, creating a more competitive and diverse mobility landscape. Moreover, automakers offer features on demand as they are turning cars into service platforms.

All of this puts the auto industry at the back of the line when it comes to receiving chips. Now, 94% of consumers check the manufacturer’s website for product information before purchasing a part. And Tesla had already decided to close all its stores in 2019, now selling all new cars online. This makes sense, as 83% of car customers already said they wish they could save time by shopping online. This number is expected to have risen in 2020 as dealers everywhere turned to digital channels. As of 2023, the two now equip Ford and Lincoln vehicles with a built-in Android operating system.

In 2025, the focus will be enhancing ADAS features, such as adaptive cruise control, lane-keeping assistance, automatic emergency braking, and more. While some regions already allow limited AV testing and deployment, 2025 will likely see a more transparent legal framework surrounding autonomous driving technology. This regulatory clarity will pave the way for broader AV adoption in cities, particularly in controlled environments like urban areas or designated autonomous vehicle lanes. As autonomous vehicles become more mainstream, governments and regulatory bodies will need to create new laws to ensure their safe deployment.